Process noise covariance estimation via stochastic approximation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relative Study of Measurement Noise Covariance R and Process Noise Covariance Q of the Kalman Filter in Estimation

In this paper is study the role of Measurement noise covariance R and Process noise covariance Q. As both the parameter in the Kalman filter is a important parameter to decide the estimation closeness to the True value , Speed and Bandwidth [1] . First of the most important work in integration is to consider the realistic dynamic model covariance matrix Q and measurement noise covariance matrix...

متن کامل

Stochastic approximation with 'bad' noise

Stability and convergence properties of stochastic approximation algorithms are analyzed when the noise includes a long range dependent component (modeled by a fractional Brownian motion) and a heavy tailed component (modeled by a symmetric stable process), in addition to the usual ‘martingale noise’. This is motivated by the emergent applications in communications. The proofs are based on comp...

متن کامل

PSF Estimation via Covariance Matching

This paper proposes a new covariance matching based technique for blurred image PSF (point spread function) estimation. A patch based image degradation model is proposed for the covariance matching estimation framework. A robust covariance metric which is based on Riemannian manifold is adapted to measure the distance between covariance matrices. The optimal PSF is computed by minimizing the di...

متن کامل

Efficient Clustering-based Noise Covariance Estimation for Maximum Noise Fraction

Most hyperspectral images (HSI) have important spectral features in specific combination of wave numbers or channels. Noise in these specific channels or bands can easily overwhelm these relevant spectral features. Maximum Noise Fraction (MNF) by Green et al. [1] has been extensively studied for noise removal in HSI data. The MNF transform maximizes the Signal to Noise Ratio (SNR) in feature sp...

متن کامل

Scalable Sparse Covariance Estimation via Self-Concordance

We consider the class of convex minimization problems, composed of a self-concordant function, such as the log det metric, a convex data fidelity term h(·) and, a regularizing – possibly non-smooth – function g(·). This type of problems have recently attracted a great deal of interest, mainly due to their omnipresence in top-notch applications. Under this locally Lipschitz continuous gradient s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Adaptive Control and Signal Processing

سال: 2019

ISSN: 0890-6327,1099-1115

DOI: 10.1002/acs.3068